1 Logistic Growth

1.1 Problems

- 1. **TRUE** False A semistable equilibrium occurs in the differential equation $\frac{dP}{dt} = P(K P) h$ when the quadratic polynomial P(K P) h has a double root.
- 2. **TRUE** False It is not possible for there to be no unstable equilibria and two stable equilibria.
- 3. The percentage of wolves in a population is modeled by the differential equation $\frac{dy}{dt} = y(1-y)(1-3y)$. Sketch some solutions and classify all the equilibria. What will the percentage of wolves be if initially there are an equal amount of wolves and bunny.

Solution: The equilibria are 0, 1, 1/3. If we draw it out, we see that 0, 1 are unstable and 1/3 is stable. If we start with 1/2 wolves, then we will end up 1/3 wolves in the future.

4. Draw some solutions and classify the equilibria of $\frac{dy}{dt} = y(2-y) - 1$.

Solution: We have $y(2 - y) - 1 = -y^2 + 2y - 1 = -(y - 1)^2$ so there only one equilibria of y = 1 which is semistable.

5. Sketch some solutions and classify the equilibria of $\frac{dy}{dt} = 4 - y^2$.

Solution: The equilibria are $y = \pm 2$. y = -2 is unstable and y = 2 is stable.

6. Sketch some solutions and classify the equilibria of $\frac{dy}{dt} = y^2(2-y)(4-y)$.

Solution: The equilibria are y = 0, 2, 4. Drawing solutions, we see that y = 0 is semistable, y = 2 is stable, y = 4 is unstable.

7. Sketch some solutions and classify the equilibria of $\frac{dy}{dt} = y(1+y)(y-1)(3-y)$.

Solution: The equilibria are y = -1, 0, 1, 3. In order, they are unstable, stable, stable, stable respectively.